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Abstract
Hopfield (1984 Proc. Natl Acad. Sci. USA 81 3088–92) showed that the time
evolution of a symmetric neural network is a motion in state space that seeks
out minima in the system energy (i.e. the limit set of the system). In practice,
a neural network is often subject to environmental noise. It is therefore useful
and interesting to find out whether the system still approaches some limit set
under stochastic perturbation. In this paper, we will give a number of useful
bounds for the noise intensity under which the stochastic neural network will
approach its limit set.

PACS numbers: 87.18.Sn, 92.59.Fz, 02.60.Nm

1. Introduction

Much of the current interest in artificial networks stems not only from their richness as a
theoretical model of collective dynamics but also from the promise they have shown as a
practical tool for performing parallel computation (cf Denker [3]). Theoretical understanding
of neural-network dynamics has advanced greatly in the past fifteen years (cf [2, 5–7, 9, 14]).
The neural network proposed by Hopfield [5] can be described by an ordinary differential
equation of the form

Ciẋi(t) = − 1

Ri

xi(t) +
n∑

j=1

Tijgj (xj (t)) + Ii 1 � i � n (1.1)

on t � 0. The variable xi(t) represents the voltage on the input of the ith neuron, and Ii is the
external input current to the ith neuron. Each neuron is characterized by an input capacitance
Ci and a transfer function gi(u). The connection matrix element Tij has a value +1/Rij when
the noninverting output of the j th neuron is connected to the input of the ith neuron through a
4 Author to whom correspondence should be addressed.
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resistance Rij , and a value −1/Rij when the inverting output of the j th neuron is connected
to the input of the ith neuron through a resistance Rij . The parallel resistance at the input

of each neuron is defined by Ri = (∑n
j=1 |Tij |

)−1
. The nonlinear transfer function gi(u) is

sigmoidal, saturating at ±1 with maximum slope at u = 0. By defining

bi = 1

CiRi

aij = Tij

Ci

ci = Ii

Ci

equation (1.1) can be re-written as

ẋi (t) = −bixi(t) +
n∑

j=1

aijgj (xj (t)) + ci 1 � i � n;

that is, in the matrix form,

ẋ(t) = −Bx(t) + Ag(x(t)) + C (1.2)

where

x(t) = (x1(t), . . . , xn(t))
T B = diag(b1, . . . , bn) A = (aij )n×n

C = (c1, . . . , cn)
T g(x) = (g1(x1), . . . , gn(xn))

T .

Note that we always have

bi =
n∑

j=1

|aij | > 0 and ci � 0 1 � i � n. (1.3)

Moreover, we assume in this paper that the network is symmetric in the sense

aij = aji 1 � i j � n (1.4)

that is, A is a symmetric matrix.
We mentioned above that the nonlinear transfer function gi(u) is sigmoidal, saturating at

±1 with maximum slope at u = 0. To be more precise, let us state the properties of gi below:

• gi(u) is strictly increasing, −1 < gi(u) < 1 and gi(0) = 0;
• ġi (u) := d

du
gi(u) > 0, it increases on u < 0, reaches its maximum βi := ġi (0) at u = 0

and then decreases on u > 0;
• g̈i (u) := d2

du2 gi(u) is bounded, g̈i (u) > 0 for u < 0, g̈i (0) = 0 and g̈i(u) < 0 for u > 0.

Moreover, gi(u) approaches its asymptotes ±1 very slowly such that∫ ±∞

0
uġi(u) du = ∞. (1.5)

Let us now define a C2-function V : Rn → R by

V (x) =
n∑

i=1

bi

∫ xi

0
uġi(u) du − 1

2

n∑
i,j=1

aijgi(xi)gj (xj ) −
n∑

i=1

cigi(xi). (1.6)

Let x(t) be a solution to network (1.2). It is easy to compute

dV (x(t))

dt
= −

n∑
i=1

ġi(xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

.

Recalling the fact that ġi(xi) > 0, we see that

dV (x(t))

dt
< 0
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unless −bixi +
∑n

j=1 aijgj (xj ) + ci = 0 for all 1 � i � n, where

dV (x(t))

dt
= 0.

It is due to this nonpositive property of dV (x(t))/dt that Hopfield [6] shows that the time
evolution of the system is a motion in state space that seeks out minima in the system energy.
More precisely, the solution will approach the set

K0 :=

x ∈ Rn : −bixi +

n∑
j=1

aijgj (xj ) + ci = 0, 1 � i � n


 . (1.7)

However, a neural network is often subject to environmental noise. For example, if every
external input Ii is perturbed in the way Ii → Ii + εiẇ1(t), where ẇ1(t) is a white noise, then
the stochastically perturbed neural network is described by a stochastic differential equation

dx(t) = [−Bx(t) + Ag(x(t)) + C] dt + σ1 dw1(t) (1.8)

where σ1 = (ε1/C1, . . . , εn/Cn)
T . If, moreover, the connection matrix element Tij is

perturbed in the way Tij → Tij + εij ẇ2(t), where ẇ2(t) is another white noise independent of
ẇ1(t), then the stochastically perturbed neural network can be described as

dx(t) = [−Bx(t) + Ag(x(t)) + C] dt + σ1 dw1(t) + σ2g(x(t)) dw2(t) (1.9)

where σ2 = (εij/Ci)n×n. In general, we may describe the stochastic neural network by a
stochastic differential equation

dx(t) = [−Bx(t) + Ag(x(t)) + C] dt + σ(x(t)) dw(t) (1.10)

on t � 0. Here w(t) = (w1(t), . . . , wm(t))T is an m-dimensional Brownian motion
defined on a complete probability space (�,F, P ) with a natural filtration {F}t�0 (i.e.
Ft = σ {w(s) : 0 � s � t}), and σ : Rn → Rn×m, i.e. σ(x) = (σij (x))n×m which is
called the noise intensity matrix. The question is: does the solution of the network under
stochastic perturbation still approach K0 or a different limit set? The main aim of this paper
is to give a positive answer. We will give several bounds for the noise intensity matrix under
which the solution of the stochastic network will approach a limit set which is in general
different from K0.

Throughout this paper we always assume that σ(x) is locally Lipschitz continuous and
satisfies the linear growth condition. It is therefore known (cf Arnold [1], Friedman [4] or Mao
[11, 12]) that given any initial value x0 ∈ Rn, equation (1.10) has a unique global solution
on t � 0 and we denote the solution by x(t; x0). We will let | · | denote the Euclidean
norm in Rn. If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix,
its trace norm is denoted by |A| =

√
trace(AT A) while its operator norm is denoted by

||A|| = sup{|Ax| : |x| = 1}. Moreover, if A is a symmetric matrix, denote by λmin(A) and
λmax(A) the smallest and largest eigenvalues, respectively.

2. Limit sets

The diffusion operator L associated with equation (1.10) is given by

L =
n∑

i=1


−bixi +

n∑
j=1

aijgj (xj ) + ci


 ∂

∂xi

+
1

2

n∑
i,j=1

(σσT (x))ij
∂2

∂xi∂xj
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where

(σσT (x))ij =
m∑

k=1

σik(x)σjk(x).

For the C2-function V defined by (1.6) we compute

∂V (x)

∂xi

=

bixi −

n∑
j=1

aijgj (xj ) − ci


 ġi(xi)

∂2V (x)

∂x2
i

=

bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i(xi) + (bi − aii ġi(xi))ġi(xi)

and

∂2V (x)

∂xi∂xj

= −aij ġi (xi)ġj (xj ) if i �= j.

Therefore

LV (x) = −
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

− 1

2

n∑
i,j=1

(σσT (x))ijaij ġi (xi)ġj (xj )

+
1

2

n∑
i=1

(σσT (x))ii




bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i(xi) + biġi(xi)


 . (2.1)

In the case when there is no stochastic perturbation, i.e. σ = 0, we have pointed out in
section 1 that LV � 0 and the solution will approach the set K0 = {x ∈ Rn : LV (x) = 0}.
The question is: does the stochastic perturbation change this property? It does, of course, for
some type of stochastic perturbation, but it may still preserve the property for a certain class
of stochastic perturbation. For example, recalling the property that

xig̈i (xi) � 0 xi ∈ R 1 � i � n

and the boundedness of gi and ġi , we observe that the sum of the second and third terms on
the right-hand side of (2.1) is bounded by h|σ(x)|2 for some constant h > 0. Hence

LV (x) � −
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

+ h|σ(x)|2.

If σ(x) is sufficiently small, for instance

|σ(x)|2 � 1

h

n∑
i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

we should have LV (x) � 0. In this case, does the solution still approach the set
{x ∈ Rn : LV (x) = 0}? The following theorem describes the situation.
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Theorem 2.1. Assume that LV (x) � 0, namely

−1

2

n∑
i,j=1

(σσT (x))ijaij ġi (xi)ġj (xj )

+
1

2

n∑
i=1

(σσT (x))ii




bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i(xi) + biġi(xi)




�
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

(2.2)

for all x ∈ Rn. Define

K = {x ∈ Rn : LV (x) = 0 and Hk(x) = 0, 1 � k � m} (2.3)

where

Hk(x) =
n∑

i=1


bixi −

n∑
j=1

aijgj (xj ) − ci


 ġi(xi)σik(x). (2.4)

Then

K �= ∅. (2.5)

Moreover, define d(x; K) = min{|x − y| : y ∈ K}, i.e. the distance between x ∈ Rn and
the set K. Then for any initial value x0 ∈ Rn, the solution x(t; x0) of equation (1.10) has the
property that

lim inf
t→∞ d(x(t; x0); K) = 0 a.s. (2.6)

that is, almost every sample path of the solution will visit the neighbourhood of K infinitely
many times. Furthermore, if for any x ∈ K , there is a neighbourhood Ox of x in Rn such that

V (y) �= V (x) for y ∈ Ox y �= x (2.7)

then for any initial value x0 ∈ Rn, the solution x(t; x0) of equation (1.10) has the property
that

lim
t→∞ x(t; x0) ∈ K a.s. (2.8)

that is, almost every sample path of the solution will converge to a point in K.

To prove the theorem let us present two useful lemmas.

Lemma 2.2. Let A(t) and U(t) be two continuous adapted increasing processes on t � 0 with
A(0) = U(0) = 0 a.s. Let M(t) be a real-valued continuous local martingale with M(0) = 0
a.s. Let ξ be a nonnegative F0-measurable random variable such that Eξ < ∞. Define

X(t) = ξ + A(t) − U(t) + M(t) for t � 0.

If X(t) is nonnegative, then

{ lim
t→∞ A(t) < ∞} ⊂ { lim

t→∞ X(t) < ∞} ∩ { lim
t→∞ U(t) < ∞} a.s.

where G ⊂ D a.s. means P(G ∩ Dc) = 0. In particular, if limt→∞ A(t) < ∞ a.s., then for
almost all ω ∈ �

lim
t→∞ X(t, ω) < ∞ lim

t→∞ U(t, ω) < ∞
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and

lim
t→∞ M(t, ω) exists and is finite.

This lemma is established by Liptser and Shiryayev [10] (theorem 7 on p 139). Using
this we can show the following result.

Lemma 2.3. If (2.2) holds, then for any initial value x0 ∈ Rn, the solution of equation (1.10)
has the properties that

−µ � lim
t→∞ V (x(t; x0)) < ∞ a.s. (2.9)

and ∫ ∞

0

[
−LV (x(t; x0)) +

m∑
k=1

H 2
k (x(t; x0)

]
dt < ∞ a.s. (2.10)

where Hk(x) have been defined by (2.4) above and

µ = 1

2

n∑
i,j=1

|aij | +
n∑

i=1

ci.

Proof. Fix any initial value and write x(t; x0) = x(t). By Itô’s formula,

V (x(t)) = V (x0) +
∫ t

0
LV (x(s)) ds + M(t)

where

M(t) =
n∑

i=1

m∑
k=1

∫ t

0


bixi(s) −

n∑
j=1

aijgj (xj (s)) − ci


 ġi (xi(s))σik(x(s)) dwk(s)

which is a real-valued continuous local martingale with M(0) = 0. It is easy to see from the
definition of function V and the properties of functions gi that

V (x) � −1

2

n∑
i,j=1

|aij | −
n∑

i=1

ci = −µ.

Hence

0 � V (x(t)) + µ = V (x0) + µ −
∫ t

0
[−LV (x(s))] ds + M(t).

An application of lemma 2.2 yields assertion (2.9) as well as∫ ∞

0
[−LV (x(s))] ds < ∞ a.s. (2.11)

and

lim
t→∞ M(t) exists and is finite almost surely. (2.12)

To prove the other assertion (2.10), define, for any integer r � 1, a stopping time

τr = inf{t � 0 : |M(t)| � r}
where, and throughout this paper, we set inf ∅ = ∞. Clearly τr ↑ ∞ a.s. and, by (2.11),
P(�1) = 1 where

�1 =
∞⋃

r=1

{ω : τr (ω) = ∞}. (2.13)
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Note from the property of the Ito integral that for any t � 0,

E

∫ t ∧ τr

0

(
m∑

k=1

H 2
k (x(s))

)
ds = E|M(t ∧ τr )|2 � r2.

Letting t → ∞ and using the well-known Fatou lemma, we obtain

E

∫ τr

0

(
m∑

k=1

H 2
k (x(s))

)
ds � r2

which yields ∫ τr

0

(
m∑

k=1

H 2
k (x(s))

)
ds < ∞ a.s.

Therefore there is a subset �2 of � with P(�2) = 1 such that for all ω ∈ �2∫ τr (ω)

0

(
m∑

k=1

H 2
k (x(s, ω))

)
ds < ∞ for all r � 1. (2.14)

Now for any ω ∈ �1 ∩ �2, there is an integer r̄ = r̄(ω), by (2.13), such that τr̄ (ω) = ∞ and
hence by (2.14)∫ ∞

0

(
m∑

k=1

H 2
k (x(s, ω))

)
ds < ∞.

Since P(�1 ∩ �2) = 1, we obtain∫ ∞

0

(
m∑

k=1

H 2
k (x(s, ω))

)
ds < ∞ a.s.

This, together with (2.11), implies the required assertion (2.10). The proof is complete. �

We can now begin to prove theorem 2.1.

Proof of theorem 2.1. Fix any initial value x0 and write x(t; x0) = x(t) as before. By
lemma 2.3, there is an �̄ ⊂ � with P(�̄) = 1 such that for every ω ∈ �̄,

−µ � lim
t→∞ V (x(t, ω)) < ∞ (2.15)

and ∫ ∞

0
U(x(t, ω)) dt < ∞ (2.16)

where

U(x) = −LV (x) +
m∑

k=1

H 2
k (x) � 0.

But, by the definition of V and property (1.5), we have

V (x) → ∞ if and only if |x| → ∞.

It therefore follows from (2.15) that

lim sup
t→∞

|x(t, ω)| < ∞.

Hence, for every ω ∈ �̄ there is a positive number h(ω) such that

|x(t, ω)| � h(ω) for all t � 0. (2.17)
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We now divide the whole proof into three steps.
Step 1. We first show that K �= ∅. Choose an ω ∈ �̄. By (2.16),

lim inf
t→∞ U(x(t, ω)) = 0.

Hence there is a divergence sequence {tr}r�1 such that

lim
r→∞ U(x(tr , ω)) = 0.

By (2.17), {x(tr, ω)}r�1 is a bounded sequence so there is a convergence subsequence {x(tr̄, ω)}
such that

lim
r̄→∞ x(tr̄ , ω) = x̄ ∈ Rn.

Since U(·) is continuous,

U(x̄) = lim
r̄→∞ U(x(tr̄ , ω)) = 0.

Noting that x ∈ K if and only if U(x) = 0, we see that x̄ ∈ K so K is nonempty.
Step 2. We next claim that

lim inf
t→∞ d(x(t, ω); K) = 0 for all ω ∈ �̄. (2.18)

If this is not true, then for some ω̂ ∈ �̄

lim inf
t→∞ d(x(t, ω̂); K) > 0.

So there is a pair of positive numbers ε and T such that

d(x(t, ω̂); K) > ε for all t � T .

Taking the boundedness of x(t, ω̂) into account, we can find a compact subset G of Rn such
that

G ∩ K = ∅ and {x(t, ω̂) : t � T } ⊂ G.

Since U(x) > 0 and is continuous on x ∈ G,

min{U(x) : x ∈ G} � ε̄ > 0.

Then

U(x(t, ω̂)) � ε̄ for all t � T .

Consequently, ∫ ∞

0
U(x(t, ω̂)) dt �

∫ ∞

T

U(x(t, ω̂)) dt = ∞

which contradicts (2.16), since (2.14) holds for all ω ∈ �̄ and of course for ω̂. Hence, (2.18)
must be true and the required assertion (2.6) follows.

Step 3. We finally prove (2.8) under additional condition (2.7). Choose any ω ∈ �̄. By
step 2, there is a divergence sequence {tr}r�1 such that

lim
r→∞ d(x(tr, ω); K) = 0. (2.19)

But, due to the boundedness of {x(tr , ω)}r�1, there is a convergence subsequence {x(tr̄ , ω)}
such that

lim
r̄→∞ x(tr̄ , ω) = x̄ ∈ Rn. (2.20)

Combining (2.19) and (2.20) we must have

x̄ ∈ K. (2.21)
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We now claim that

lim
t→∞ x(t, ω) = x̄. (2.22)

If this is false, then

lim sup
t→∞

|x(t, ω) − x̄| > 0. (2.23)

By condition (2.7), there is an ε > 0 such that

V (y) �= V (x̄) for y ∈ S̄ε(x̄) y �= x̄ (2.24)

where S̄ε(x̄) = {y ∈ Rn : |y − x̄| � ε}. Due to the continuity of x(t, ω) in t, we observe from
(2.20) and (2.23) that there is an ε̄ ∈ (0, ε) and a divergence sequence {tu}u�1 such that

{x(tu, ω) : u � 1} ⊂ S̄ε(x̄) − Sε̄(x̄)

where Sε̄(x̄) = {y ∈ Rn : |y − x̄| < ε̄}. Hence, there is a convergence subsequence
{x(tū, ω)}ū�1 of {x(tu, ω)}u�1 such that

lim
ū→∞ x(tū, ω) = y ∈ S̄ε(x̄) − Sε̄(x̄). (2.25)

Since V (·) is continuous, we derive from (2.22), (2.24) and (2.25) that

lim
r̄→∞ V (x(tr̄ , ω)) = V (x̄) �= V (y) = lim

ū→∞ V (x(tū, ω)).

In other words, limt→∞ V (x(t, ω)) does not exist. But this contradicts (2.15) so (2.22) must
hold. Now the required assertion (2.8) follows from (2.21) and (2.22). The proof is therefore
complete. �

3. Conditions for LV � 0

Theorem 2.1 shows that as long as LV (x) � 0, the nonempty set K exists and the solutions
of the neural network under stochastic perturbation will approach this set with probability 1 if
the additional condition (2.7) is satisfied. It is therefore useful to know how large a stochastic
perturbation the neural network can tolerate without losing the property of LV (x) � 0.
Although we pointed out in the previous section that there is some h > 0 such that

LV (x) � −
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

+ h|σ(x)|2

we did not estimate the h. If we know more precisely about h, we can estimate the noise
intensity, for instance,

|σ(x)|2 � 1

h

n∑
i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

to guarantee LV (x) � 0.
In section 1 we have listed the properties of functions gi . Let us now introduce

γi = max

{
|g̈i (xi)| : 0 ∧

(
−1 +

ci

bi

)
� xi � 1 +

ci

bi

}
1 � i � n. (3.1)

The following lemma explains why γi are defined in the way above.

Lemma 3.1. We always have
bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i(xi) � (bi + ci)γi 1 � i � n (3.2)

for all xi ∈ R.
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Proof. If xi > 1 + ci/bi, g̈i (xi) < 0 (due to the property of g̈i) and, by (1.3), we have

bixi −
n∑

j=1

aijgj (xj ) − ci � bixi −
n∑

j=1

|aij | − ci = bixi − bi − ci > 0

so 
bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i (xi) < 0.

If xi < 0 ∧ (−1 + ci/bi), g̈i (xi) > 0 and

bixi −
n∑

j=1

aijgj (xj ) − ci � bixi +
n∑

j=1

|aij | − ci = bixi + bi − ci < 0

so 
bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i (xi) < 0.

But if 0 ∧ (−1 + ci/bi) � xi � 1 + ci/bi, xig̈i (xi) � 0 so
bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i (xi) �


 n∑

j=1

|aij | + ci


 |g̈i(xi)| � (bi + ci)γi.

Hence (3.2) always holds. The proof is complete. �

We can now describe a condition for LV � 0.

Theorem 3.2. If

1

2
|σ(x)|2[ max

1�i�n
((bi + ci)γi + biġi (xi) − λmin(A)|ġi (xi)|2)]

�
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

(3.3)

then LV (x) � 0.

Proof. Compute
n∑

i,j=1

(σσT (x))ij aij ġi (xi)ġj (xj ) =
n∑

i,j=1

m∑
k=1

σik(x)σjk(x)aij ġi (xi)ġj (xj )

=
m∑

k=1

n∑
i,j=1

ġi (xi)σik(x)aij ġj (xj )σjk(x)

�
m∑

k=1

λmin(A)

n∑
i=1

|ġi(xi)σik(x)|2

=
m∑

k=1

n∑
i=1

λmin(A)|ġi(xi)|2|σik(x)|2. (3.4)
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Also, by lemma 3.1,

n∑
i=1

(σσT (x))ii




bixi −

n∑
j=1

aijgj (xj ) − ci


 g̈i(xi) + biġi(xi)




�
n∑

i=1

(σσT (x))ii[(bi + ci)γi + biġi (xi)]

=
m∑

k=1

n∑
i=1

[(bi + ci)γi + biġi(xi)]|σik(s)|2. (3.5)

Substituting (3.4) and (3.5) into (2.1) yields

LV (x) = −
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

− 1

2

m∑
k=1

n∑
i=1

λmin(A)|ġi (xi)|2|σik(x)|2

+
1

2

m∑
k=1

n∑
i=1

((bi + ci)γi + biġi(xi))|σik(s)|2

= −
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

+
1

2

m∑
k=1

n∑
i=1

((bi + ci)γi + biġi(xi) − λmin(A)|ġi(xi)|2)|σik(s)|2

� −
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

+
1

2
|σ(x)|2[ max

1�i�n
((bi + ci)γi + biġi (xi) − λmin(A)|ġi (xi)|2)]. (3.6)

Using (3.3) we have LV (x) � 0. The proof is complete. �

In the case when λmin(A) � 0 we may use the following easier criterion for LV (x) � 0.

Corollary 3.3. If A is a symmetric nonnegative-definite matrix and

|σ(x)|2 � 2

h

n∑
i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

(3.7)

holds for all x ∈ Rn, where

h = max
1�i�n

[(bi + ci)γi + biβi] (3.8)

then LV (x) � 0. (Recall that βi = ġi(0) which was defined in section 1.)
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Proof. Using the conditions we compute

1

2
|σ(x)|2[ max

1�i�n
((bi + ci)γi + biġi (xi) − λmin(A)|ġi (xi)|2)]

� 1

2
|σ(x)|2 max

1�i�n
((bi + ci)γi + biġi(xi)) � h

2
|σ(x)|2

�
n∑

i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

;

that is, (3.3) holds so the conclusion follows from theorem 3.2. �

In the case when λmin(A) < 0 we may also have the following easier criterion for
LV (x) � 0.

Corollary 3.4. If λmin(A) < 0 and

|σ(x)|2 � 2

h̄

n∑
i=1

ġi (xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

(3.9)

holds for all x ∈ Rn, where

h̄ = max
1�i�n

[(
(bi + ci)γi + biβi + |λmin(A)|β2

i

)]
(3.10)

then LV (x) � 0.

Proof. Compute, by (3.9) and (3.10),

1

2
|σ(x)|2[ max

1�i�n
((bi + ci)γi + biġi (xi) − λmin(A)|ġi (xi)|2)]

� 1

2
|σ(x)|2[ max

1�i�n

(
(bi + ci)γi + biβi + |λmin(A)|β2

i

)]

= h̄

2
|σ(x)|2 �

n∑
i=1

ġi(xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

;

that is, (3.3) holds so the conclusion follows from theorem 3.2. The proof is complete. �

4. An example

In this section we will discuss an example, where we let the number of neurons be two in order
to make the calculations relatively easier but the theory of this paper is illustrated clearly. In
what follows we will also let w(·) be a one-dimensional Brownian motion.

Example 4.1. Consider a two-dimensional stochastic neural network

dx(t) = [−Bx(t) + Ag(x(t)) + C] dt + σ(x(t)) dw(t) (4.1)

where

B =
[

3 0
0 1.5

]
A =

[
2 1
1 0.5

]
C =

[
1
2

]

g(x) = (g1(x1), g2(x2))
T g1(u) = g2(u) = 2

π
arctan(u) σ (x) = (σ1(x), σ2(x))T
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and σ(x) is locally Lipschitz continuous and bounded. Compute

ġi (u) = 2

π(1 + u2)
and g̈i(u) = − 4u

π(1 + u2)2
.

Clearly,

β1 = β2 = 2

π
and

∫ ±∞

0
uġi(u) du = ∞.

Moreover, by definition (3.1)

γ1 = γ2 = 3
√

3

4π

since |g̈i(u)| reaches the maximum at u = ±1/
√

3. Noting that A is nonnegative-definite, we
may apply corollary 3.3. Compute by (3.8)

h = max
i=1,2

[(bi + ci)γi + biβi] = 2(2 +
√

3)

π
.

Therefore, if

σ 2
1 (x) + σ 2

2 (x) � 2

2 +
√

3

(
1

1 + x2
1

[
−3x1 +

4

π
arctan(x1) +

2

π
arctan(x2) + 1

]2

+
1

1 + x2
2

[
−1.5x1 +

2

π
arctan(x1) +

1

π
arctan(x2) + 2

]2
)

(4.2)

then LV (x) � 0. The right-hand side of (4.2) gives a bound for the noise intensity. As long as
the noise intensity is smaller than the bound, by theorem 2.1, there is a nonempty set K such
that almost every sample path of the solution of equation (4.1) will visit the neighbourhood of
K infinitely many times. In particular, if

σ 2
1 (x) + σ 2

2 (x) � 1

2

(
1

1 + x2
1

[
−3x1 +

4

π
arctan(x1) +

2

π
arctan(x2) + 1

]2

+
1

1 + x2
2

[
−1.5x1 +

2

π
arctan(x1) +

1

π
arctan(x2) + 2

]2
)

(4.3)

then we have from (3.6) and the proof of corollary 3.3 that

LV (x) � −
∑
i=1,2

ġi(xi)


−bixi +

n∑
j=1

aijgj (xj ) + ci




2

+
h

2
|σ(x)|2

� − 2 − √
3

2π

(
1

1 + x2
1

[
−3x1 +

4

π
arctan(x1) +

2

π
arctan(x2) + 1

]2

+
1

1 + x2
2

[
−1.5x1 +

2

π
arctan(x1) +

1

π
arctan(x2) + 2

]2
)

. (4.4)

It is therefore easy to see that the set K defined by (2.4) is contained by the following set:

K0 =
{
(x1, x2)

T ∈ R2 : −3x1 +
4

π
arctan(x1) +

2

π
arctan(x2) + 1 = 0

and −1.5x1 +
2

π
arctan(x1) +

1

π
arctan(x2) + 2 = 0

}
.
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It is not difficult to show that K0 = {(0.8649, 1.8649)T }, i.e. K0 contains only one point in
R2. Since K is nonempty and K ⊆ K0, we must have

K = K0 = {(0.8649, 1.8649)T }.
It is not difficult to show that (0.8649, 1.8649)T is the unique minimum point of function
V (x) in this example. We can therefore conclude by theorem 2.1 that all of the solutions of
equation (4.1) will tend to (0.8649, 1.8649)T with probability 1 as long as (4.3) is satisfied.
Note that this conclusion is independent of the form of the noise intensity matrix σ(x) but only
requires that the norm of σ(x) be bounded by the right-hand side of (4.3). In other words, we
obtain a robustness property of the neural network.

5. Further discussions

To close our paper, let us have some further discussions on the way in which noise is introduced
into a Hopfield network.

It is known that noise has been introduced into a Hopfield network so that the network
can avoid getting trapped into a local minima and hence the time evolution of the network
is a motion in state space that seeks out its global minima in the system energy. In such
a stochastic Hopfield network, the units are stochastic and the degree is determined by a
temperature analogue parameter. The stochastic units are actually introduced to mimic the
variable strength with which real neurons fire, delays in synapses and random fluctuations
from the release of transmitters in discrete vesicles. By including stochastic units it becomes
possible with a simulated annealing technique to try and avoid getting trapped into local
minima. By making use of a mean-field approximation the Hopfield network again evolves
into a deterministic version, and one can then instead apply mean-field annealing to try and
avoid local minima.

In the present paper, the introduced Hopfield network is that with continuous-valued
transfer functions, but with added terms corresponding to environmental noise. The noise here
is not that which is added into the network on purpose to avoid local minima as mentioned
above, but it is the environmental noise which the network cannot avoid. Our contribution
here is to present some interesting results on the amount of noise that can be tolerated in a
Hopfield neural network while still preserving its limit set or experiencing at least another
limit set.
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